Data Analytics with Python/Core Python
1. Module : Python Essentials Introduction
- What is Python...?
- A Brief history of Python
- Why Should I learn Python...?
- Installing Python
- How to execute Python program
- Write your first program
- Variables
- Numbers
- Operator
- if...statement
- if...else statement
- Elif...statement
- The while...Loop
- The for....Loop
- Continue, break, pass statement
2. Strings
- Introduction to Python ‘string’ data type
- Properties of a string
- String built-in functions
- Programming withstrings
- String formatting
3. Lists and Tuples
- Introduction to Python ‘list’ data type
- Properties of a list
- List built-in functions
- Programming with lists
- List comprehension
- Introduction to Python ‘tuple’ data type
- Tuples as Read only lists
4. Dictionary and Sets
- Introduction to Python ‘dictionary’ data type
- Creating a dictionary
- Dictionary built-in functions
- Introduction to Python ‘set’ data type
- Set and set properties
- Set built-in functions
5. User defined functions
- Introduction to functions
- Function definition and return
- Function call and reuse
- Function parameters
- scope of variable(call by value, call by reference)
6. Modules and Packages
- Importing module (from, import statement)
- Anonymous functions(Lambda)
- Filter
- Map
- Reduce
7. Working with files
- File objects and Modes of file operations
- Reading, writing and use of ‘with’ keyword
- Read(), Readline(), Readlines(), Write(), Writeline()
- Pickle module
8. Exception Handling in Python
- Understanding exceptions
- Try, Except, else and finally
- Raising exceptions with: raise, assert
9. OOPs Concept
- Class and object
- Attributes
- Inheritance
- Overloading
- Overriding
- Data hiding
10. Regular expressions
- Match function
- Search function
- Matching VS Searching
- Modifiers
- Patterns
11. Database(MySQL)
- Introduction
- Connections
- Executing queries
- Transactions
- Handling error
12. Mathematical Computing with Python (NumPy)
- NumPy Overview
- Properties, Purpose, and Types of ndarray
- Class and Attributes of ndarray Object
- Basic Operations: Concept and Examples
- Initializing arrays: random, ones, zeros
- Accessing Array Elements: Indexing, Slicing, Iteration, Indexing with Boolean Arrays
- Shape Manipulation
- Linear Algebra
13. Data Manipulation with Python (Pandas)
- Introduction to Pandas
- Data Structures
- Series
- Data Frame
- Missing Values
- Data Operations
- Data Standardization
- Pandas File Read (CSV,TSV,EXCEL,ACCESS) and Write Support
- Data Acquisition (Import & Export)
14. Data analysis –Visualization using Matplotlib & Seaborn
- Introduction exploratory data analysis
- Descriptive statistics, Frequency Tables and summarization
- Univariate Analysis (Distribution of data & Graphical Analysis)
- Creating Graphs-Bar/pie/line chart/histogram/ boxplot/ scatter/columns